国产日韩精品欧美一区喷,大又大粗又爽又黄少妇毛片男同 ,另类色综合,在线免费不卡视频,国产精品V日韩精品,伊人久综合,在线无码va中文字幕无码,欧美有码在线观看

高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)總結(jié)

時(shí)間:2022-01-25 11:52:15 總結(jié) 我要投稿

高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)總結(jié)錦集

  在我們平凡的學(xué)生生涯里,是不是經(jīng)常追著老師要知識點(diǎn)?知識點(diǎn)是知識中的最小單位,最具體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。那么,都有哪些知識點(diǎn)呢?以下是小編為大家整理的高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)總結(jié)錦集,供大家參考借鑒,希望可以幫助到有需要的朋友。

高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)總結(jié)錦集

  高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)總結(jié)1

  一、求導(dǎo)數(shù)的方法

  (1)基本求導(dǎo)公式

  (2)導(dǎo)數(shù)的四則運(yùn)算

  (3)復(fù)合函數(shù)的導(dǎo)數(shù)

  設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即()

  二、關(guān)于極限

  1、數(shù)列的極限:

  粗略地說,就是當(dāng)數(shù)列的項(xiàng)n無限增大時(shí),數(shù)列的項(xiàng)無限趨向于A,這就是數(shù)列極限的描述性定義。記作:()=A。

  2、函數(shù)的極限:

  當(dāng)自變量x無限趨近于常數(shù)時(shí),如果函數(shù)無限趨近于一個(gè)常數(shù),就說當(dāng)x趨近于時(shí),函數(shù)的極限是(),記作()

  三、導(dǎo)數(shù)的概念

  1、在處的導(dǎo)數(shù)。

  2、在的導(dǎo)數(shù)。

  3、函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義:

  函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,

  即k=(),相應(yīng)的切線方程是()

  注:函數(shù)的導(dǎo)函數(shù)在時(shí)的函數(shù)值,就是在處的導(dǎo)數(shù)。

  例、若()=2,則()=()A—1B—2C1D

  四、導(dǎo)數(shù)的綜合運(yùn)用

  (一)曲線的切線

  函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程()。具體求法分兩步:

  (1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率k=

  (2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為x。

  高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)總結(jié)2

  (一)導(dǎo)數(shù)第一定義

  設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量△y=f(x0+△x)—f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第一定義

  (二)導(dǎo)數(shù)第二定義

  設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x—x0也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化△y=f(x)—f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第二定義

  (三)導(dǎo)函數(shù)與導(dǎo)數(shù)

  如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y=f(x)對于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y,f(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。

  (四)單調(diào)性及其應(yīng)用

  1、利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟

  (1)求f(x)

  (2)確定f(x)在(a,b)內(nèi)符號(3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

  2、用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟

  (1)求f(x)

  (2)f(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間

  學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識點(diǎn),接下來可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。

  高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)總結(jié)3

  1、高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)

  一、早期導(dǎo)數(shù)概念——特殊的形式大約在1629年法國數(shù)學(xué)家費(fèi)馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時(shí)他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f(A)。

  二、17世紀(jì)——廣泛使用的“流數(shù)術(shù)”17世紀(jì)生產(chǎn)力的發(fā)展推動了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當(dāng)于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運(yùn)用無窮多項(xiàng)方程的計(jì)算法》和《流數(shù)術(shù)和無窮級數(shù)》流數(shù)理論的實(shí)質(zhì)概括為他的重點(diǎn)在于一個(gè)變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個(gè)比當(dāng)變化趨于零時(shí)的極限。

  三、19世紀(jì)導(dǎo)數(shù)——逐漸成熟的理論1750年達(dá)朗貝爾在為法國科學(xué)家院出版的《百科全書》第五版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點(diǎn)可以用現(xiàn)代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個(gè)給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個(gè)包含在這兩個(gè)不同界限之間的值那么是使變量得到一個(gè)無窮小增量。19世紀(jì)60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語言對微積分中出現(xiàn)的各種類型的極限重加表達(dá)導(dǎo)數(shù)的定義也就獲得了今天常見的形式。

  四、實(shí)無限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個(gè)部分。一個(gè)是實(shí)無限理論即無限是一個(gè)具體的東西一種真實(shí)的存在另一種是潛無限指一種意識形態(tài)上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實(shí)無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個(gè)物理學(xué)長期爭論的問題后來由波粒二象性來統(tǒng)一。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。

  2、高中數(shù)學(xué)導(dǎo)數(shù)要點(diǎn)

  1、求函數(shù)的單調(diào)性:

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo):

  (1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);

  (2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);

  (3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:

  :①求函數(shù)yf(x)的定義域;

  ②求導(dǎo)數(shù)f(x);

  ③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;

  ④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

  反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo):

  (1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

  (2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

  (3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

  2、求函數(shù)的極值:

  設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的.所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

  可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

  (1)確定函數(shù)f(x)的定義域;

  (2)求導(dǎo)數(shù)f(x);

  (3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:

  (4)檢查f(x)的符號并由表格判斷極值。

  3、求函數(shù)的最大值與最小值:

  如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的最大值。函數(shù)在定義域內(nèi)的極值不一定唯一,但在定義域內(nèi)的最值是唯一的。

  求函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值的步驟:

  (1)求f(x)在區(qū)間(a,b)上的極值;

  (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的最大值與最小值。

  4、解決不等式的有關(guān)問題:

  (1)不等式恒成立問題(絕對不等式問題)可考慮值域。

  f(x)(xA)的值域是[a,b]時(shí),

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

  f(x)(xA)的值域是(a,b)時(shí),

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

  (2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

  5、導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:

  實(shí)際生活求解最大(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值。在利用導(dǎo)數(shù)來求函數(shù)最值時(shí),一定要注意,極值點(diǎn)唯一的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說明。

【高中數(shù)學(xué)導(dǎo)數(shù)知識點(diǎn)總結(jié)錦集】相關(guān)文章:

有關(guān)導(dǎo)數(shù)知識點(diǎn)總結(jié)01-22

高中數(shù)學(xué)必修四知識點(diǎn)總結(jié)12-03

導(dǎo)數(shù)切線斜率公式10-11

導(dǎo)數(shù)的應(yīng)用專題說課稿11-04

高中數(shù)學(xué)教學(xué)總結(jié)(15篇)01-21

高中數(shù)學(xué)返崗實(shí)踐總結(jié)06-05

高中數(shù)學(xué)教師學(xué)習(xí)總結(jié)01-13

《觀潮》知識點(diǎn)總結(jié)11-17

寒假總結(jié)作文300字錦集01-12

教師學(xué)習(xí)總結(jié)錦集7篇02-13

主站蜘蛛池模板: 97视频在线观看免费视频| 91精品国产91久无码网站| 操国产美女| 亚洲福利网址| 午夜福利无码一区二区| 被公侵犯人妻少妇一区二区三区| 91最新精品视频发布页| 久久久久久午夜精品| 日韩欧美中文字幕一本| 欧美日韩一区二区在线免费观看| 精品久久综合1区2区3区激情| 98精品全国免费观看视频| 亚洲色精品国产一区二区三区| 久久semm亚洲国产| 亚洲国产成人综合精品2020 | 成人无码一区二区三区视频在线观看 | 国产精品欧美激情| 中文无码毛片又爽又刺激| 国产啪在线91| 亚洲综合天堂网| 中文字幕天无码久久精品视频免费 | 色男人的天堂久久综合| 女同国产精品一区二区| 亚洲成a∧人片在线观看无码| 久久9966精品国产免费| 久久综合五月婷婷| 亚洲中文字幕在线精品一区| 亚洲欧美综合另类图片小说区| 91精品福利自产拍在线观看| 不卡无码网| 亚洲精品在线91| 国产后式a一视频| 欧美国产在线一区| 国产91在线|日本| 国产精品极品美女自在线看免费一区二区| 大乳丰满人妻中文字幕日本| 精品人妻无码中字系列| 成年人视频一区二区| 91精品人妻一区二区| 国产在线一二三区| 亚洲第一中文字幕| 亚洲精品天堂自在久久77| 在线免费看黄的网站| 无码有码中文字幕| 成人毛片在线播放| 久99久热只有精品国产15| a网站在线观看| 无码精品国产dvd在线观看9久| 国产欧美性爱网| 中文字幕无码中文字幕有码在线 | 久久国产高清视频| 午夜精品久久久久久久2023| 久久精品国产91久久综合麻豆自制| 精品综合久久久久久97超人| 五月激情综合网| 久久精品一品道久久精品| 中文字幕首页系列人妻| 国产精品视频白浆免费视频| 国产精品视频系列专区| 欧美区日韩区| 成人国产精品网站在线看| 3344在线观看无码| 久久国产亚洲欧美日韩精品| 亚洲婷婷六月| 久草网视频在线| 国产流白浆视频| 国产人人乐人人爱| 538精品在线观看| 日韩精品一区二区深田咏美| 中文字幕日韩久久综合影院| 网友自拍视频精品区| 日本不卡在线播放| jijzzizz老师出水喷水喷出| 成人综合在线观看| 日韩成人免费网站| 亚洲中文无码h在线观看| 五月婷婷伊人网| 日本免费高清一区| 亚洲欧美综合精品久久成人网| 精品国产美女福到在线直播| 国产欧美在线| 国产尤物视频在线|