国产日韩精品欧美一区喷,大又大粗又爽又黄少妇毛片男同 ,另类色综合,在线免费不卡视频,国产精品V日韩精品,伊人久综合,在线无码va中文字幕无码,欧美有码在线观看

高一數學知識點總結

時間:2021-10-08 13:36:31 總結 我要投稿

人教版高一數學知識點總結精選

  總結是把一定階段內的有關情況分析研究,做出有指導性的經驗方法以及結論的書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統的、本質的理性認識上來,是時候寫一份總結了。那么你知道總結如何寫嗎?以下是小編為大家收集的人教版高一數學知識點總結精選,僅供參考,希望能夠幫助到大家。

人教版高一數學知識點總結精選

人教版高一數學知識點總結精選1

  冪函數的性質:

  對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

  排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;

  排除了為0這種可能,即對于x<0x="">0的所有實數,q不能是偶數;

  排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

  總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;

  如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。

  在x大于0時,函數的值域總是大于0的實數。

  在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。

  而只有a為正數,0才進入函數的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況。

  可以看到:

  (1)所有的圖形都通過(1,1)這點。

  (2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。

  (3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。

  (4)當a小于0時,a越小,圖形傾斜程度越大。

  (5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。

  (6)顯然冪函數無界。

  解題方法:換元法

  解數學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。

  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。

人教版高一數學知識點總結精選2

  【立體幾何初步】

  1、柱、錐、臺、球的結構特征

  (1)棱柱:

  定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的`幾何體。

  分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

  分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等

  表示:用各頂點字母,如五棱臺

  幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

  (6)圓臺:

  定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

  側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:

  ①原來與x軸平行的線段仍然與x平行且長度不變;

  ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

人教版高一數學知識點總結精選3

  集合間的基本關系

  1。“包含”關系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2。“相等”關系:A=B(5≥5,且5≤5,則5=5)

  實例:設A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”

  即:①任何一個集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果AB,BC,那么AC

  ④如果AB同時BA那么A=B

  3。不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n個元素的集合,含有2n個子集,2n—1個真子集

  集合的運算

  運算類型交集并集補集

  定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。

  設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

人教版高一數學知識點總結精選4

  函數圖象知識歸納

  (1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象。

  C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上。即記為C={P(x,y)|y=f(x),x∈A}

  圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。

  (2)畫法

  A、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點P(x,y),最后用平滑的曲線將這些點連接起來。

  B、圖象變換法(請參考必修4三角函數)

  常用變換方法有三種,即平移變換、伸縮變換和對稱變換

  (3)作用:

  1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。

人教版高一數學知識點總結精選5

  元素與集合的關系有“屬于”與“不屬于”兩種。

  集合與集合之間的關系

  某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作AB。中學教材課本里將符號下加了一個≠符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。

【人教版高一數學知識點總結精選】相關文章:

高一數學知識點總結07-20

高一數學必修一知識點總結08-09

高一政治知識點總結05-08

高一化學知識點總結01-12

高一歷史知識點總結05-07

高考數學知識點總結05-18

高一政治必修一知識點總結05-09

人教版高一地理必修二常考知識點11-12

上海高一數學教學總結01-11

高中地理必修一知識點總結人教版01-06

主站蜘蛛池模板: 最新加勒比隔壁人妻| 日本久久久久久免费网络| 高清色本在线www| 亚洲成人77777| 亚洲中文字幕无码mv| 日韩人妻少妇一区二区| 91青青草视频在线观看的| 久久99蜜桃精品久久久久小说| 91青青草视频在线观看的| 亚洲一区二区三区麻豆| 亚洲天堂网2014| 亚洲精品视频在线观看视频| 欧美成人精品一区二区| 久久精品中文无码资源站| 91极品美女高潮叫床在线观看| 国产老女人精品免费视频| 亚洲欧美精品一中文字幕| 亚洲成人在线免费观看| 就去吻亚洲精品国产欧美| 九色综合伊人久久富二代| 大陆国产精品视频| 综合色区亚洲熟妇在线| 日韩在线观看网站| 色视频国产| 尤物成AV人片在线观看| 久久久噜噜噜| 99热6这里只有精品| 8090午夜无码专区| 高清视频一区| 国产在线观看一区二区三区| 91在线播放国产| 九色视频在线免费观看| 亚洲日韩欧美在线观看| 成人无码一区二区三区视频在线观看| 精品一区二区三区波多野结衣| 国产成人精品第一区二区| 久久成人免费| 免费看黄片一区二区三区| 91蜜芽尤物福利在线观看| 在线无码私拍| 三上悠亚一区二区| 这里只有精品免费视频| 国产福利免费视频| 国产成年女人特黄特色毛片免 | 免费jjzz在在线播放国产| 99re精彩视频| 911亚洲精品| 国产在线观看91精品亚瑟| 国产精品久久国产精麻豆99网站| 午夜在线不卡| 亚洲精品不卡午夜精品| 国产精品无码AV片在线观看播放| 亚洲精品日产精品乱码不卡| 欧美国产日韩在线| 国产人成乱码视频免费观看| 精品人妻无码中字系列| 亚洲日韩第九十九页| 欧美爱爱网| 最新加勒比隔壁人妻| 精品少妇人妻一区二区| 婷婷开心中文字幕| 久久中文无码精品| 亚洲天堂视频在线播放| 国产精品综合久久久| 五月天综合婷婷| 国产黑丝一区| 欧美激情二区三区| 毛片在线播放a| 亚洲精品自产拍在线观看APP| 亚洲精品午夜天堂网页| 三级毛片在线播放| 亚洲无码视频一区二区三区| 免费A级毛片无码无遮挡| 日韩精品免费在线视频| 欧美一级大片在线观看| 精品国产成人a在线观看| 国产伦精品一区二区三区视频优播| 亚洲精品国产精品乱码不卞| 伊在人亚洲香蕉精品播放| 国产91麻豆视频| 亚洲色大成网站www国产| 国产精品亚洲日韩AⅤ在线观看|