国产日韩精品欧美一区喷,大又大粗又爽又黄少妇毛片男同 ,另类色综合,在线免费不卡视频,国产精品V日韩精品,伊人久综合,在线无码va中文字幕无码,欧美有码在线观看

高中三角函數公式總結

時間:2022-08-08 18:21:45 總結 我要投稿
  • 相關推薦

高中三角函數公式總結

  總結就是把一個時段的學習、工作或其完成情況進行一次全面系統的總結,它有助于我們尋找工作和事物發展的規律,從而掌握并運用這些規律,讓我們好好寫一份總結吧。那么總結應該包括什么內容呢?以下是小編整理的高中三角函數公式總結,僅供參考,希望能夠幫助到大家。

高中三角函數公式總結

  高中三角函數公式總結 篇1

  銳角三角函數公式

  sin α=∠α的對邊 / 斜邊

  cos α=∠α的鄰邊 / 斜邊

  tan α=∠α的對邊 / ∠α的鄰邊

  cot α=∠α的'鄰邊 / ∠α的對邊

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推導

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  輔助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降冪公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推導公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sina)+(1-2sina)sina

  =3sina-4sina

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cosa-1)cosa-2(1-sina)cosa

  =4cosa-3cosa

  sin3a=3sina-4sina

  =4sina(3/4-sina)

  =4sina[(√3/2)-sina]

  =4sina(sin60°-sina)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cosa-3cosa

  =4cosa(cosa-3/4)

  =4cosa[cosa-(√3/2)]

  =4cosa(cosa-cos30°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述兩式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  兩角和差

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  和差化積

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

  積化和差

  sinαsinβ = [cos(α-β)-cos(α+β)] /2

  cosαcosβ = [cos(α+β)+cos(α-β)]/2

  sinαcosβ = [sin(α+β)+sin(α-β)]/2

  cosαsinβ = [sin(α+β)-sin(α-β)]/2

  誘導公式

  sin(-α) = -sinα

  cos(-α) = cosα

  tan (—a)=-tanα

  sin(π/2-α) = cosα

  cos(π/2-α) = sinα

  sin(π/2+α) = cosα

  cos(π/2+α) = -sinα

  sin(π-α) = sinα

  cos(π-α) = -cosα

  sin(π+α) = -sinα

  cos(π+α) = -cosα

  tanA= sinA/cosA

  tan(π/2+α)=-cotα

  tan(π/2-α)=cotα

  tan(π-α)=-tanα

  tan(π+α)=tanα

  誘導公式記背訣竅:奇變偶不變,符號看象限

  萬能公式

  sinα=2tan(α/2)/[1+tan^(α/2)]

  cosα=[1-tan^(α/2)]/1+tan^(α/2)]

  tanα=2tan(α/2)/[1-tan^(α/2)]

  其它公式

  (1)(sinα)^2+(cosα)^2=1

  (2)1+(tanα)^2=(secα)^2

  (3)1+(cotα)^2=(cscα)^2

  證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可

  (4)對于任意非直角三角形,總有

  tanA+tanB+tanC=tanAtanBtanC

  證:

  A+B=π-C

  tan(A+B)=tan(π-C)

  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  得證

  同樣可以得證,當x+y+z=nπ(n∈Z)時,該關系式也成立

  由tanA+tanB+tanC=tanAtanBtanC可得出以下結論

  (5)cotAcotB+cotAcotC+cotBcotC=1

  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

  (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  高中三角函數公式總結 篇2

  三角形與三角函數

  1、正弦定理:在三角形中,各邊和它所對的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R 。(其中R為外接圓的半徑)

  2、第一余弦定理:三角形中任意一邊等于其他兩邊以及對應角余弦的'交叉乘積的和,即a=c cosB + b cosC

  3、第二余弦定理:三角形中任何一邊的平方等于其它兩邊的平方之和減去這兩邊與它們夾角的余弦的積的2倍,即a^2=b^2+c^2—2bc·cosA

  4、正切定理(napier比擬):三角形中任意兩邊差和的比值等于對應角半角差和的正切比值,即(a—b)/(a+b)=tan[(A—B)/2]/tan[(A+B)/2]=tan[(A—B)/2]/cot(C/2)

  5、三角形中的恒等式:

  對于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC

  證明:

  已知(A+B)=(π—C)

  所以tan(A+B)=tan(π—C)

  則(tanA+tanB)/(1—tanAtanB)=(tanπ—tanC)/(1+tanπtanC)

  整理可得

  tanA+tanB+tanC=tanAtanBtanC

  類似地,我們同樣也可以求證:當α+β+γ=nπ(n∈Z)時,總有tanα+tanβ+tanγ=tanαtanβtanγ

【高中三角函數公式總結】相關文章:

《三角函數的誘導公式》教學反思04-22

高中數列公式總結12-07

高中階乘公式總結大全12-06

高中物理復習公式總結:平拋運動公式總結06-26

高中物理部分公式總結11-10

高中物理電場公式總結06-16

高中的物理公式及其重點內容的總結10-20

高中物理復習公式大全總結06-26

氣體的性質高中物理復習公式總結06-26

主站蜘蛛池模板: 极品私人尤物在线精品首页| 中文无码精品a∨在线观看| 毛片在线播放a| 亚洲色图另类| 国产成人精品男人的天堂| 三上悠亚一区二区| 国产精品自在自线免费观看| 日本在线免费网站| 亚洲精品波多野结衣| 54pao国产成人免费视频| 国产精品无码在线看| 国产成人亚洲无码淙合青草| 天堂网亚洲系列亚洲系列| 91人妻日韩人妻无码专区精品| 伊人成人在线视频| 丁香婷婷激情综合激情| 成人在线不卡视频| 国产精品无码AV中文| 亚洲精品777| 精品欧美一区二区三区在线| 日韩欧美中文字幕在线精品| 欧美国产精品不卡在线观看| 亚洲青涩在线| 美女免费黄网站| 亚洲日本www| 国产流白浆视频| 国产成人一区免费观看| 国产三级视频网站| 一级看片免费视频| 亚洲av无码成人专区| 亚洲欧洲日韩综合色天使| 四虎在线观看视频高清无码| 波多野结衣在线一区二区| 五月婷婷亚洲综合| 久久婷婷六月| 亚洲综合一区国产精品| 免费观看国产小粉嫩喷水| 国产福利影院在线观看| 国产精品美女网站| 国产一级视频在线观看网站| 91黄视频在线观看| 波多野结衣无码AV在线| 精品免费在线视频| h视频在线观看网站| 国产在线91在线电影| 亚洲AV无码不卡无码 | 国产99视频精品免费视频7| 国产专区综合另类日韩一区| 亚洲欧洲美色一区二区三区| 午夜一级做a爰片久久毛片| 国产成人av一区二区三区| 亚洲欧美综合在线观看| a在线亚洲男人的天堂试看| 欧美精品v日韩精品v国产精品| 色偷偷一区| 999在线免费视频| 国产人前露出系列视频| 99re免费视频| 蜜桃臀无码内射一区二区三区| 亚洲成人手机在线| 亚洲人成亚洲精品| 日韩av高清无码一区二区三区| 国产视频久久久久| 亚洲欧美一级一级a| 欧亚日韩Av| 亚洲日韩第九十九页| 丁香亚洲综合五月天婷婷| 日本伊人色综合网| 亚洲香蕉伊综合在人在线| 国产主播一区二区三区| 色婷婷丁香| 视频二区国产精品职场同事| 国产精品亚洲专区一区| 日本亚洲欧美在线| 欧美亚洲第一页| 国产精品亚洲片在线va| 国语少妇高潮| 一级毛片高清| 中文字幕久久亚洲一区| 亚洲国产日韩视频观看| 国产黄在线观看| 亚洲日韩精品伊甸|