国产日韩精品欧美一区喷,大又大粗又爽又黄少妇毛片男同 ,另类色综合,在线免费不卡视频,国产精品V日韩精品,伊人久综合,在线无码va中文字幕无码,欧美有码在线观看

等價無窮小性質(zhì)的理解、延拓及應用的論文

時間:2021-06-10 19:07:17 論文 我要投稿

等價無窮小性質(zhì)的理解、延拓及應用的論文

  【摘要】   等價無窮小具有很好的性質(zhì),靈活運用這些性質(zhì),無論是在在求極限的運算中,還是在正項級數(shù)的斂散性判斷中,都可取到預想不到的效果,能達到羅比塔法則所不能取代的作用。通過舉例,對比了不同情況下等價無窮小的應用以及在應用過程中應注意的一些性質(zhì)條件,不僅使這些原本復雜的問題簡單化,而且可避免出現(xiàn)錯誤地應用等價無窮小。

等價無窮小性質(zhì)的理解、延拓及應用的論文

  【關鍵詞】 等價無窮小 極限 羅比塔法則 正項級數(shù) 比較審斂法

  Comprension,Expand and Application of Equivalent Infinitesimal#39;s Character

  Abstract Equivalent Infinitesimal have good characters,both in opreation of test for Limit and determine whether the positive series converges or diverges,if these quality that apply flexibly can obtain more effect,the effection can not be replace by L#39;Hospital Rule.this paper give examples and compare some instance to pay attention to condition in application of Equivalent Limit,so the question can be simply and avoid error in application.

  Key words equivalent Infinitesimal; limit; L#39;Hospital rule positive series; comparison test

  等價無窮小概念是高等數(shù)學中最基本的概念之一,但在高等數(shù)學中等價無窮小的性質(zhì)僅僅在“無窮小的比較”中出現(xiàn)過,其他地方似乎都未涉及到。其實,在判斷廣義積分、級數(shù)的斂散性,特別是在求極限的運算過程中,無窮小具有很好的性質(zhì),掌握并充分利用好它的性質(zhì),往往會使一些復雜的問題簡單化,可起到事半功倍的效果,反之,則會錯誤百出,有時還很難判斷錯在什么地方。因此,有必要對等價無窮小的性質(zhì)進行深刻地認識和理解,以便恰當運用,達到簡化運算的目的。

  1 等價無窮小的概念及其重要性質(zhì)[1]

  無窮小的定義是以極限的形式來定義的,當x→x0時(或x→∞)時,limf(x)=0,則稱函數(shù)f(x)當x→x0時(或x→∞)時為無窮小。

  當limβα=1,就說β與α是等價無窮小。

  常見性質(zhì)有:

  設α,α′,β,β′,γ 等均為同一自變量變化過程中的無窮小, ① 若α~α′,β~β′, 且limα′β′存在,則limαβ=limα′β′② 若α~β,β~γ,則α~γ

  性質(zhì)①表明等價無窮小量的商的極限求法。性質(zhì)②表明等價無窮小的傳遞性若能運用極限的`運算法則,可繼續(xù)拓展出下列結論:

  ③ 若α~α′,β~β′, 且limβα=c(≠-1),則α+β~α′+β′

  證明:∵ limα+βα′+β′=lim1+βαα′α+β′α′=lim1+c1+αα′·βα·β′β

  =lim1+c1+c=1 ∴ α+β~α′+β′

  而學生則往往在性質(zhì)(3)的應用上忽略了“l(fā)imβα=c(≠-1)”這個條件,千篇一律認為“α~α′,β~β′,則有α+β~α′+β′

  ④ 若α~α′,β~β′, 且limAα′±Bβ′Cα′±Dβ′存在,則當Aα′±Bβ′Cα′±Dβ′≠0且 limAα±BβCα±Dβ存在,有l(wèi)imAα±BβCα±Dβ=limAα′±Bβ′Cα′±Dβ′

  此性質(zhì)的證明見文獻[2],性質(zhì)③、④在加減法運算的求極限中就使等價無窮小的代換有了可能性,從而大大地簡化了計算。但要注意條件“l(fā)imβα=c(≠-1)”,“Aα′±Bβ′Cα′±Dβ′≠0”的使用。

  2 等價無窮小的應用

  2.1 在求極限中經(jīng)常用到的等價無窮小有 x~sinx~arcsinx~tanx~arctanx~ln(1+x)~ex-1, 1-cosx~12x2, n1+x~1+xn,(x→0)

  例1 limx→0tanx-sinxx3

  解:原式=limx→0sinx(1-cosx)x3cosx

  =limx→0x·12x2x3(∵ sinx~x,1-cosx~x22)

  =12

  此題也可用羅比塔法則做,但不能用性質(zhì)④做。

  ∵ tanx-sinxx3=x-xx3=0,不滿足性質(zhì)④的條件,否則得出錯誤結論0。

  例2 limx→0e2x-31+xx+sinx2

  解:原式=limx→0e2x-1-(31+x-1)x+x2=limx→02x-13xx(1+x)=53

  用性質(zhì)④直接將等價無窮小代換進去,也可用羅比塔法則做。

  例3 limx→0(1x2-cot2x)

  解法1:原式=limx→0sin2x-x2cos2xx2sin2x

  =limx→0(sinx+xcosx)(sinx-xcosx)x4

  =limx→0x2(1+cosx)(1-cosx)x4 (∵ sinx~x)

  =limx→0(1+cosx)(1-cosx)x2

  =limx→012x2·(1+cosx)x2=1

  解法2:原式=limx→0tan2x-x2x2tan2x

  =limx→0(tanx+x)(tanx-x)x4

  =limx→02x(tanx-x)x44 (∵ tanx~x)

  =limx→02(tanx-x)x3=limx→02(sec2x-1)3x2

  =23limx→0tan2xx2=23 (∵ tanx~x)

  兩種解法的結果不同,哪一種正確呢?可以發(fā)現(xiàn)解法1錯了,根源在于錯用sinx-xcosx~x-xcosx (注意limx→0sinx-xcosx=-1), 由性質(zhì)③ sinx-xcosx并不等價于x-xcosx 。 從解法2又可以看到盡管羅比塔法則是求極限的一個有力工具,但往往需要幾種方法結合起來運用,特別是恰當適時地運用等價無窮小的代換,能使運算簡便,很快得出結果。

  2.2 在正項級數(shù)的審斂判別法中,用得比較多的是比較審斂法的極限形式,它也是無窮小的一個應用。

  比較審斂法的極限形式:設∑∞n=1un 和∑∞n=1vn 都是正項級數(shù), ① 如果limn→∞unvn=l(0≤l<+∞) ,且級數(shù)∑∞n=1vn收斂,則級數(shù)∑∞n=1un收斂。

  ② 如果limn→∞unvn=l>0 或limn→∞unvn=+∞,且級數(shù)∑∞n=1vn發(fā)散,則級數(shù)∑∞n=1un發(fā)散。當l=1時,∑un,∑vn就是等價無窮小。由比較審斂法的極限形式知,∑un與∑vn同斂散性,只要已知∑un,∑vn中某一個的斂散性,就可以找到另一個的斂散性。

  例4 判定∑∞n=11n2-lnn 的斂散性

  解: ∵ limn→∞1n2-lnn1n2=limn→∞n2n2-lnn=1 又∑1n2 收斂 ∴ ∑∞n=11n2-lnn 收斂

  例5 研究∑∞n=11ln(1+n)的斂散性

  解: limn→∞1ln(1+n)1n=limn→∞nln(1+n)=1 而∑1n 發(fā)散 ∴ ∑∞n=11ln(1+n) 發(fā)散

  3 等價無窮小無可比擬的作用

  以例3看,若直接用羅比塔法則會發(fā)現(xiàn)出現(xiàn)以下結果:

  原式=limx→0tan2x-x2x2tan2x=limx→02(secx·tanx-x)2xtan2x+2x2tanx·secx

  =limx→0secx(tan2x-sec2x)-1tan2x+4x·tanx·secx+x2secx(sec2x+tan2x)式子越變越復雜,難于求出最后的結果。而解法2適時運用性質(zhì)①,將分母x2tan2x替換成x4,又將分子分解因式后進行等價替換,從而很快地求出正確結果。再看一例:

  例6[3] limx→0+tan(sinx)sin(tanx)

  解:原式=limx→0+sec2(sinx)cosx2tan(sinx)cos(tanx)sec2x2sin(tanx) (用羅比塔法則)

  =limx→0+sec2(sinx)cosxcos(tanx)sec2x·limx→0+sin(tanx)tan(sinx) (分離非零極限乘積因子)

  =limx→0+sin(tanx)tan(sinx) (算出非零極限)

  =limx→0+cos(sinx)sec2x2sin(tanx)sec2(sinx)cosx2tan(sinx) (用羅比塔法則)

  =limx→0+cos(sinx)sec2xsec2(sinx)cosx·limx→0+tan(sinx)sin(tanx)

  =limx→0+tan(sinx)sin(tanx)

  出現(xiàn)循環(huán),此時用羅比塔法則求不出結果。怎么辦?用等價無窮小代換。

  ∵ x~sinx~tanx(x→0)

  ∴ 原式=limx→0+xx=1而得解。

  由此可看到羅比塔法則并不是萬能的,也不一定是最佳的,它的使用具有局限性[3]。只要充分地掌握好等價無窮小的4條性質(zhì)就不難求出正確的結論。

  【參考文獻】

  1 同濟大學應用數(shù)學系,主編.高等數(shù)學.第5版.北京:高等教育出版社,2002,7(38):56~59.

  2 楊文泰,等.價無窮小量代換定理的推廣.甘肅高師學報,2005,10(2):11~13.

  3 王斌.用羅比塔法則求未定式極限的局限性的探討.黔西南民族師專學報,2001,12(4):56~58.

【等價無窮小性質(zhì)的理解、延拓及應用的論文】相關文章:

等價無窮小的使用前提09-28

李嘉圖等價定理論文04-27

應用電子技術理解論文03-29

等價的造句06-23

膠體的性質(zhì)及其應用的教案08-12

小學《小數(shù)性質(zhì)的應用》教案10-02

《減法性質(zhì)及其應用》教案及反思07-02

關于醇類的性質(zhì)及應用的教學反思07-17

小議行乞權性質(zhì)論文05-27

主站蜘蛛池模板: 午夜三级在线| 99这里精品| 精品少妇三级亚洲| yjizz国产在线视频网| 精品国产成人国产在线| 内射人妻无码色AV天堂| 热久久综合这里只有精品电影| 99热这里都是国产精品| 成人伊人色一区二区三区| 五月婷婷导航| 天堂中文在线资源| 久久久久久高潮白浆| 性喷潮久久久久久久久| 亚洲区视频在线观看| 手机在线免费毛片| 国产国产人成免费视频77777| 国产无码网站在线观看| 青青久视频| 91精品国产91欠久久久久| 国产精品无码影视久久久久久久| 欧美日韩亚洲国产主播第一区| 91精品视频播放| 久久综合干| 午夜福利在线观看成人| 国产成+人+综合+亚洲欧美| 中文纯内无码H| 夜夜爽免费视频| 亚洲一区第一页| 99国产在线视频| 久久永久视频| 国产成人夜色91| 久久久久久尹人网香蕉| 在线视频97| 国产午夜福利片在线观看| 在线国产91| 日本爱爱精品一区二区| а∨天堂一区中文字幕| av尤物免费在线观看| 天天爽免费视频| 一本二本三本不卡无码| 成AV人片一区二区三区久久| 欧美精品v日韩精品v国产精品| 久久国产亚洲偷自| 亚洲天堂自拍| 免费一级无码在线网站| 免费av一区二区三区在线| 亚洲天堂视频网站| 成人无码区免费视频网站蜜臀| 亚洲天堂高清| h网站在线播放| 亚洲第一黄色网址| 色成人综合| 亚洲首页在线观看| 综合五月天网| 亚洲成人网在线播放| 日韩二区三区| 色综合综合网| 亚洲国产系列| 欧美日韩国产在线人成app| 亚洲综合色在线| 国产精品jizz在线观看软件| 欧美中出一区二区| 成人蜜桃网| 无码专区在线观看| 中文成人在线| 欧美乱妇高清无乱码免费| 精品自窥自偷在线看| 国产免费人成视频网| 网久久综合| 狼友av永久网站免费观看| 亚洲最黄视频| 精品国产免费观看一区| 国产精品hd在线播放| 538精品在线观看| av在线5g无码天天| 久精品色妇丰满人妻| 97se亚洲| Jizz国产色系免费| 国产成人高清精品免费软件| 一级毛片在线播放免费| 免费午夜无码18禁无码影院| 国产欧美日韩综合在线第一|